Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Corrosion behavior of SUS316L in nitric acid solution containing seawater components

Sano, Yuichi; Ambai, Hiromu; Takeuchi, Masayuki; Iijima, Shizuka; Uchida, Naoki

Proceedings of European Corrosion Congress 2016 (EUROCORR 2016) (USB Flash Drive), 10 Pages, 2016/09

During the Fukushima Daiichi Nuclear Power Plant accident, significant volume of seawater was injected into the storage pool for spent nuclear fuel as the coolant. In this study, we investigated the effect of seawater components on the corrosion behavior of SUS316L stainless steel in HNO$$_{3}$$ solution. Electrochemical and immersion tests were carried out using a mixture of HNO$$_{3}$$ and artificial seawater (ASW). In the HNO$$_{3}$$ solution containing high amounts of ASW, the cathodic current densities increased and uniform corrosion progressed. This might be caused by strong oxidants, such as Cl$$_{2}$$ and NOCl, generated in the reaction between HNO$$_{3}$$ and Cl$$^{-}$$ ions. In addition, pitting corrosion occurred simultaneously at low HNO$$_{3}$$ concentrations. The corrosion rate decreased with the immersion time at low concentrations of HNO$$_{3}$$, while it increased at high concentrations. It is assumed that the cathodic reactions proceed slowly and the anodic reactions are gradually prevented by the growth of an oxide film on the surface of the coupon in low-concentration HNO$$_{3}$$. On the other hand, high-concentration HNO$$_{3}$$ triggers a vigorous cathodic reaction, which disturbs the growth of the oxide film and activates the anodic reactions. This competition between the cathodic and anodic reactions causes a change in the corrosion rates with the immersion time in a mixture of HNO$$_{3}$$ and ASW.

Journal Articles

Effect of boiling of nitric acid solution on corrosion of Stainless steel-made concentrator in reduced pressure

Ueno, Fumiyoshi; Irisawa, Eriko; Kato, Chiaki; Igarashi, Takahiro; Yamamoto, Masahiro; Abe, Hitoshi

Proceedings of European Corrosion Congress 2016 (EUROCORR 2016) (USB Flash Drive), 7 Pages, 2016/09

In this study, we focused on the effect of the boiling of nitric acid solution on the corrosion of a stainless steel-made concentrator in reduced pressure in fuel reprocessing plant. In order to perform the simulation test in a non-radioactive condition, nitric acid solution with the addition of vanadium as an oxidizing metal ion were used. Corrosion tests were carried out under the conditions of boiling at reduced pressure, and of non-boiling at normal pressure and several temperatures. As a result, corrosion was accelerated by the solution boiling while it was not by non-boiling at the same temperature. It was found also that the temperature dependence of corrosion rate is the same in the both conditions of boiling and non-boiling. The corrosion accelerating effect will be discussed on the basis of the reaction among nitric acid, NOx and vanadium, etc.

2 (Records 1-2 displayed on this page)
  • 1